КУРСОВАЯ РАБОТА

по дисциплине «Основы теории цепей» на тему

«Анализ линейных цепей»

Для студентов групп: M4O–201C, 202C, 203C, 205C, 206C, 207C Весенний семестр 2017/18 учебного года

Подготовительный этап

Получите у преподавателя Ваш номер варианта задания. Согласно номеру варианта определите в таблице 1 номер схемы и параметры исследуемого контура. По номеру схемы определите топологию цепи из таблицы 2.

Часть I. Анализ частотных характеристик

- 1. Рассчитайте номиналы элементов схемы контура, обеспечивающие заданные параметры Вашего варианта. Эти значения будут использованы для всех численных расчётов в Вашей работе.
- 2. Запишите аналитическое выражение комплексного сопротивления $Z(\omega)$ относительно зажимов источника напряжения или комплексной проводимости $Y(\omega)$ относительно зажимов источника тока.
- 3. Найдите аналитическое выражение для модуля и аргумента, действительной и мнимой частей комплексного сопротивления $Z(\omega)$ или комплексной проводимости $Y(\omega)$. Постройте графики полученных зависимостей и по ним определите резонансную частоту ω_0 , полосу пропускания $\Delta\omega$, добротность Q.
- 4. Определите аналитическое выражение комплексной частотной характеристики (КЧХ) колебательного контура, связывающей заданную реакцию и величину, создаваемую источником, подключенным к контуру.
- 5. Найдите аналитические выражение и постройте графики для АЧХ и ФЧХ. Оцените по графикам параметры контура: резонансную частоту ω_0 , полосу пропускания $\Delta\omega$, добротность Q, а также максимальный коэффициент передачи K_{\max} .
- 6. Постройте векторные диаграммы для токов (в узлах) и напряжений (вдоль контуров) схемы на частоте ω_0 , а также на частоте $\omega_{\text{н}}$ или $\omega_{\text{в}}$.
- 7. Сделайте выводы по части І. Выводы могут включать в себя следующее:
 - сопоставление значений, заданных в варианте, со значениями, оцененными в пунктах 3 и 5;
 - объяснение поведения модуля, аргумента, действительной и мнимой частей $Z(\omega)$ или $Y(\omega)$;
 - объяснение поведения модуля и аргумента комплексной частотной характеристики на разных частотах с помощью эквивалентных схем;
 - сопоставление результатов, полученных в пунктах 3 и 5;
 - пояснение характера и причин различия векторных диаграмм колебательного контура для двух разных частот.

Часть II. Анализ с использованием динамических уравнений

В качестве воздействия выберите сигнал из таблицы 3, параметры которого определяются по номеру варианта.

- 1. Составьте систему динамических уравнений, описывающую цепь в переменных состояния.
- 2. Составьте динамическое уравнение «вход-выход», связывающее заданную реакцию и воздействие, представленное в цепи независимым источником.
- 3. Определите начальные условия для искомой реакции:
 - а. Определите независимые начальные условия (начальные состояния цепи).
 - b. Пересчитайте независимые начальные условия в зависимые (если искомая реакция не является переменной состояния).
- 4. Решите динамическое уравнение с учетом начальных условий (начальную задачу Коши):
 - а. Найдите собственное решение ДУ.
 - b. Найдите вынужденное решение ДУ.
 - с. Определите неизвестные постоянные общего решения, используя начальные условия.
- 5. Постройте график найденной реакции. Оцените по этому графику параметры колебательного контура: резонансную частоту, добротность, полосу пропускания.
- 6*. Решите систему динамических уравнений (из пункта 1):
 - а. Определите выражения для переменных состояния.
 - b. Постройте их графики.
 - с. Проверьте, что подходящая линейная комбинация переменных состояния образует реакцию, совпадающую с найденной в пункте 4.
- 7. Сделайте выводы по части II. Выводы могут включать в себя следующее:
 - качественный анализ динамического уравнения;
 - сопоставление параметров контура (добротность, резонансная частота), представленных в задании и их значений, оцененных по найденной реакции;
 - пояснение различия параметров контура: заданных и оцененных по его реакции;
 - физическое объяснение поведение реакции колебательного контура в момент скачка.

Часть III. Операторный анализ

В качестве воздействия выберите сигнал из таблицы 3, параметры которого определяются по номеру варианта.

- 1. Составьте операторную схему замещения заданной цепи с учётом начальных условий.
 - а. определите выражение для системной функции, связывающей реакцию и воздействие в заданной цепи;
 - b. найдите операторные коэффициенты, определяющие вклад начальных состояний цепи в реакцию.
- 2. Определите начальные состояния цепи и изображения входного воздействия для заданного входного сигнала.
- 3. Используя результаты пунктов 1 и 2, определите изображение сигнала на выходе цепи. Восстановите выходной сигнал по его изображению. Постройте график.
- 4. Постройте для системной функции диаграмму особых точек (диаграмму нулей и полюсов).
- 5. Определите выражение для комплексной частотной характеристики, используя выражение для системной функции. Постройте графики амплитудно-частотной и фазо-частотной характеристик. Оцените параметры контура по графикам АЧХ и ФЧХ.
- 6*.Проанализируйте влияние положения полюсов на комплексной плоскости на параметры контура. Проиллюстрируйте изменения с помощью серии графиков частотной характеристики.
- 7*.Проанализируйте взаимное соответствие между положениями полюсов на комплексной плоскости и значениями номиналов элементов цепи. Постройте графики объясняющих зависимостей.
- 8. Сделайте выводы по части III. Выводы могут включать в себя следующее:
 - сравнение оценок параметров колебательного контура, полученных по графикам реакции из пункта 3, с исходными параметрами, заданными в варианте;
 - анализ диаграммы нулей и полюсов (пункт 4);
 - объяснение общего вида (эскиза) частотной характеристики (пункт 5) с использованием диаграммы нулей и полюсов;
 - подробные комментарии по пунктам 6 и 7.

Часть IV. Временной анализ

Получите у преподавателя воздействия, используемые в этой части работы.

- 1. Определите импульсную характеристику заданной цепи.
 - а. Определите точное выражение.
 - b*. Определите приближенные выражения. Укажите условия допустимости таких приближений. Оцените погрешности приближения параметров.
- 2. Постройте график импульсной характеристики. Оцените по нему параметры контура.
- 3*.Определите выражение для переходной характеристики цепи. Постройте её график.
- 4. Определите сигнал на выходе цепи путём свертки заданного входного сигнала и импульсной характеристики:
 - а. аналитическим расчётом интеграла свёртки;
 - b. численным расчетом интеграла свертки с использованием выбранного программного пакета.
- 5. Постройте график выходного сигнала, сопоставьте с входным сигналом.
- 6*.Проанализируйте изменение формы сигнала на выходе цепи в зависимости от изменения длительности (физической длительности) входного сигнала.
- 7. Сделайте выводы по части IV. Выводы могут включать в себя следующее:
 - анализ формы и параметров импульсной характеристики;
 - анализ выходных сигналов (пункты 5 и 6);

Таблица 1. Варианты заданий.

D	C	Реакция	Параметры контура			
Bap.	Схема		Q	f_0 , к Γ ц	ρ , к O м	
1.	1	$v_{C}(t)$	12	20	0,1 0,11	
2.	1	$i_{C}\left(t ight)$	9	22	0,11 0,12	
3.	1	$v_L(t)$	11	23	0,13 0,14	
4.	1	$i_L(t)$	8	26	0,15 0,16	
5.	1	$v_{R1}(t)$	10	28	0,17 0,18	
6.	1	$i_{R2}(t)$	7	30	0,19 0,20	
7.	2	$v_L(t)$	12	31	0,21 0,22	
8.	2	$i_L(t)$	9	33	0,23 0,24	
9.	2	$v_{C}(t)$	11	35	0,25 0,26	
10.	2	$i_{C}\left(t ight)$	8	37	0,27 0,28	
11.	2	$v_{R1}(t)$	10	39	0,29 0,30	
12.	2	$i_{R2}\left(t ight)$	7	41	0,31 0,32	
13.	3	$i_L(t)$	12	20	0,33 0,34	
14.	3	$v_L(t)$	9	22	0,35 0,36	
15.	3	$i_{C}\left(t ight)$	11	23	0,37 0,38	
16.	3	$v_{C}(t)$	8	26	0,39 0,40	
17.	3	$i_{R2}\left(t ight)$	10	28	0,41 0,42	
18.	3	$v_{R1}(t)$	7	30	0,43 0,44	
19.	4	$i_{C}\left(t ight)$	12	31	0,45 0,46	
20.	4	$v_{C}(t)$	9	33	0,47 0,48	
21.	4	$i_L(t)$	11	35	0,49 0,50	
22.	4	$v_L(t)$	8	37	0,51 0,52	
23.	4	$i_{R2}(t)$	10	39	0,53 0,54	
24.	4	$v_{R1}(t)$	7	41	0,55 0,56	
25.	5	v(t)	14	21	0,57 0,58	
26.	5	$i_{R1}(t)$	10	23	0,59 0,60	
27.	5	$v_L(t)$	13	25	0,61 0,62	
28.	5	$i_L(t)$	9	27	0,63 0,64	

Вар.	Схема	Реакция	Параметры контура			
			Q	f_0 , к Γ ц	$ ho$, к ${ m O}$ м	
29.	5	$i_{C}\left(t ight)$	12	29	0,65 0,66	
30.	5	$v_{C}(t)$	8	31	0,67 0,68	
31.	5	$v_{R2}(t)$	11	33	0,69 0,70	
32.	5	$v_{R3}(t)$	7	35	0,71 0,72	
33.	6	i(t)	14	37	0,73 0,74	
34.	6	$v_{R1}(t)$	10	39	0,75 0,76	
35.	6	$i_{C}\left(t ight)$	13	41	0,77 0,78	
36.	6	$v_{C}(t)$	9	43	0,79 0,80	
37.	6	$i_L(t)$	12	45	0,81 0,82	
38.	6	$v_L(t)$	8	47	0,83 0,84	
39.	6	$i_{R2}(t)$	11	49	0,85 0,86	
40.	6	$i_{R3}(t)$	7	51	0,87 0,88	

Таблица 2. Схемы колебательных контуров

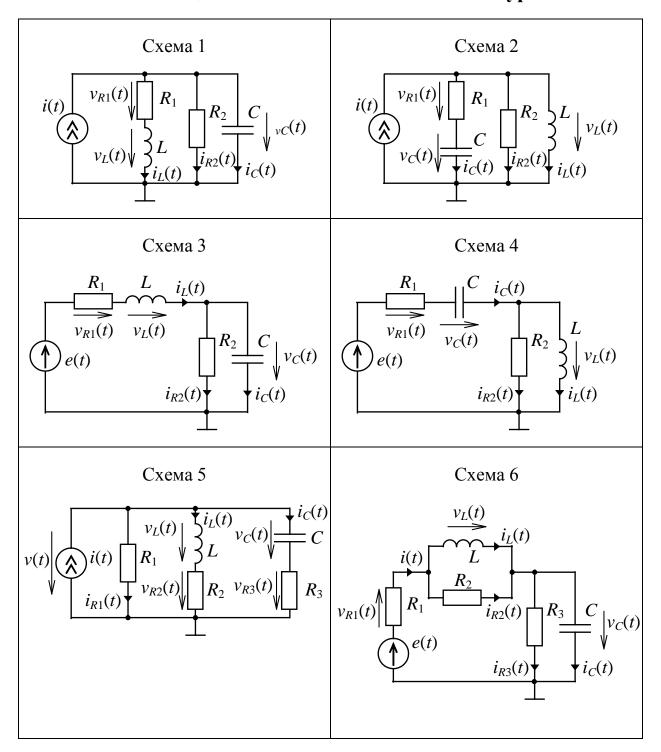


Таблица 3. Варианты воздействий для части II

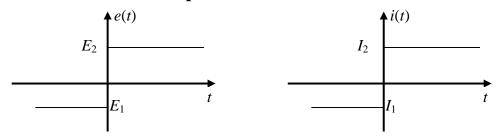


Рис. 1. Форма воздействия, создаваемая источником.

Для схем 3, 4, 6: величина $E_1=\mathrm{N}_1$ [B], $E_2=\mathrm{N}_2$ [B] Для схем 1, 2, 5: величина $I_1=\mathrm{N}_1$ [мА], $I_2=\mathrm{N}_2$ [мА]

Вариант	N_1	N_2	Вариант	N_1	N_2
1	-1	2	21	-1	2
2	-2	4	22	-2	4
3	-3	6	23	-3	6
4	-4	8	24	-4	8
5	-5	10	25	-5	10
6	-6	12	26	-6	12
7	-2	3	27	-2	2
8	-2 -3	3	28	-3	3
9	-4	4	29	-4	4
10	-5	5	30	-5	5
11	-16	16	31	-16	16
12	-10	10	32	-10	10
13	-2 -5	3	33	-2	3
14	-5	8	34	-5	8
15	-8	12	35	-8	12
16	– 7	11	36	– 7	11
17	-4	6	37	-4	6
18	-3	4	38	-3	4
19	2	5	39	2	5
20	3	7	40	3	7